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A soft elastohydrodynamic lubrication model is formulated for deformable roll coating
involving two contra-rotating rolls, one rigid and the other covered with a compliant
layer. Included is a finite-strip model (FSM) for the deformation of the layer and a
lubrication model with suitable boundary conditions for the motion of the fluid. The
scope of the analysis is restricted to Newtonian fluids, linear elasticity/viscoelasticity
and equal roll speeds, with application to the industrially relevant highly loaded
or ‘negative gap’ regime. Predictions are presented for coated film thickness, inter-
roll thickness, meniscus location, pressure and layer deformation as the control
parameters – load (gap), elasticity, layer thickness and capillary number, Ca – are
varied. There are four main results:

(i) Hookean spring models are shown to be unable to model effectively the
deformation of a compliant layer when Poisson’s ratio ν → 0.5. In particular, they
fail to predict the swelling of the layer at the edge of the contact region which
increases as ν → 0.5; they also fail to locate accurately the position of the meniscus,
XM , and to identify the presence, close to the meniscus, of a ‘nib’ (constriction in gap
thickness) and associated magnification of the sub-ambient pressure loop.

(ii) Scaling arguments suggest that layer thickness and elasticity may have similar
effects on the field variables. It is shown that for positive gaps this is true, whereas for
negative gaps they have similar effects on the pressure profile and flow rate yet quite
different effects on layer swelling (deformation at the edge of the contact region) and
different effects on XM .

(iii) For negative gaps and Ca ∼ O(1), the effect of varying either viscosity or speed
and hence Ca is to significantly alter both the coating thickness and XM . This is
contrary to the case of fixed-gap rigid roll coating.

(iv) Comparison between theoretical predictions and experimental data shows
quantitive agreement in the case of XM and qualitive agreement for flow rate. It is
shown that this difference in the latter case may be due to viscoelastic effects in the
compliant layer.

1. Introduction
Industrial roll coating systems are relatively inexpensive to build and maintain,

simple to operate and versatile, hence their continued widespread use for applying a
thin liquid film onto a moving substrate in the form of a continuous reel of paper,
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Coated web

Compliant layer

Figure 1. Cross-sectional schematic of a deformable roll coater operating
in forward mode.

plastic or metal. Such systems can consist of a large number of paired rolls, each pair
metering a continuous layer of liquid and operating in either forward (contra-rotating)
or reverse (co-rotating) mode (Coyle 1997).

Despite their apparent complexity they can be analysed by understanding the flow
between each roll pair in terms of film thickness ratio, roll separation and the ratios of
the peripheral roll speeds and radii, see Benjamin & Scriven (1992). Roll pairs, for the
case when both are rigid and separated by a small distance, or ‘positive gap’, have been
studied exhaustively, both experimentally (Ho & Holland 1978; Benkreira, Edwards
& Wilkinson 1981; Malone 1992; Decre, Gailly & Buchlin 1995; Gaskell, Innes &
Savage 1998) and theoretically (Greener & Middleman 1975; Ruschak 1982, 1985;
Coyle, Macosko & Scriven 1986, 1990a, b; Gaskell et al. 1995; Gaskell, Savage &
Thompson 1998) and there remains little that is not known about the fluid mechanics
that underpins them.

If one roll is rigid and the other is covered with a compliant layer a ‘negative gap’
is formed by nipping together the roll pair, see figure 1. This serves to: (i) minimize
sensitivity to mechanical tolerances such as roll run-out and surface finish; (ii) avoid
damage due to roll clash and the risk of wear; (iii) produce thinner films at higher
production speeds and avoid or delay the onset of the ribbing instability (Carvalho
& Scriven 1995a, 1997a, 1999). In practice the compliant layer is made from an
elastomeric material which in general is incompressible. It is the analysis of this
type of deformable roll coater, involving fluid–solid interactions (elastohydrodynamic
lubrication), that forms the topic of this paper.

Elastohydrodynamic lubrication (EHL) has its origins in tribology with the work
of Dowson & Higginson (1966). In ‘soft EHL’, where pressures are low and viscosity
is assumed constant, Herrebrugh (1968), Hooke & O’Donoghue (1972) and Hall
& Savage (1988b) investigated contacts in which the deformable bodies can be
regarded as a half-space. The EHL of elastic layers was considered by Hooke (1986),
Elsharkawy & Hamrock (1995) and Bohan et al. (1997). In every case the motion
of the fluid was modelled by lubrication theory with Reynolds boundary conditions
applied to terminate the flow regime. Since tribologists, unlike coating specialists,
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are concerned with load carrying capacity rather than flow rate and film thickness
prediction, Reynolds conditions prove sufficient and so it has not been necessary to
consider different boundary conditions. Other references of interest are Houpert &
Hamrock (1986), Jaffar (1990) and Xue, Gethin & Lim (1994, 1996).

When deformable bodies are in dry contact, displacement and contact pressure
are related via an integral equation. This equation expresses the fact that pressure,
at every point of the contact, contributes to the displacement at a given point. A
Chebyshev series method was developed by Hall & Savage (1988a) for dry contact
problems and subsequently applied to elastohydrodynamic contacts (Hall & Savage
1988b). This series method was extended to contacts with deformable layers by Jaffar
& Savage (1988), and Myers, Savage & Gaskell (1994).

Research into deformable roll coating began with the pioneering work of Coyle
(1988) who presented a simple analysis based on lubrication theory and Reynolds
conditions for the fluid coupled with a one-dimensional constrained column model
(CCM) (which it should be noted is invalid in the context of incompressible materials)
for the deformation of the compliant layer. Essentially the latter is a simple Hookean
spring model in which the local fluid pressure is assumed to be directly proportional
to the local deformation. In doing so he was the first to attempt to predict the
variation in resultant film thickness for both positive- and negative-gap regimes.
Recent experimental results (Cohu & Magnin 1995, 1997) highlight the effect of the
depth of the compliant layer on the resultant film thickness, indicating agreement
with Coyle’s theory for thick layers only. Indeed, they show that decreasing the
elastomer covering below a critical value tends to decrease the coating thickness
significantly.

Carvalho and Scriven attempted to validate the CCM used by Coyle by proposing
and comparing several distinct models for the deformation of a compliant layer
coupled with a fluid model for fully submerged rolls, i.e. no free surfaces present.
First, they considered (Carvalho & Scriven 1994): (i) a one-dimensional Hookean
spring model; (ii) a one-dimensional neo-Hookean model; (iii) a two-dimensional
linear elasticity model for which the deformable layer is regarded as an infinite half-
space (HSM) – the other physical extreme to the CCM. Their results revealed that
flow rate predictions obtained with each model differed by less than 10%. However,
these results should be treated with a degree of caution as the effect of layer thickness
was not explored and the HSM is only valid for deep layers. Secondly, they compared
(Carvalho & Scriven 1997b) the CCM to a model that treated the elastomer as a
Mooney–Rivlin material. They produced results that highlighted the effects of gap
setting, elasticity and layer thickness on flow rate and found that, by varying the
constant of proportionality inherent in the CCM, good agreement between the two
models could be achieved. However, the constant of proportionality was assumed
to be a multiple of E/L, where E is Young’s modulus and L is the thickness of
the compliant layer, and therefore there is an implicit assumption that E and L−1

have the same effect on the field variables. Also, free-surface effects were discarded
during the comparisons and consequently their results do not fully justify the use
of such a calibrated CCM in the general case. In addition, the CCM is incapable
of preserving the deformable layers’ volume – a prerequesite for incompressible
materials.

Despite the weaknesses associated with any calibrated version of the CCM, it has
been used to perform both steady-state investigations (Carvalho & Scriven 1995b,
1996) and linear stability analyses (Carvalho & Scriven 1997a, 1999) of the deformable
roll coating process in the presence of a free surface. With the use of the CCM these
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results indicate that deformable roll coating is a more stable process than its rigid
roll counterpart. The effect of capillary number has been investigated (Carvalho &
Scriven 1996) in the positive-gap regime and it was shown to have a similar affect
on the field variables as in fixed-gap rigid roll coating. However, the effects in the
industrially relevant negative-gap regime were not explored.

Predictions of these elastic models differ substantially from experimental results
(Cohu & Magnin 1997) and this led to investigations of the viscoelastic effects in
the compliant layer. Carvalho & Scriven (1996) used a modified CCM and Carvalho
(1999) used a two-dimensional plane-strain model, along with a fully flooded fluid
model, and in each case it was shown that the inclusion of viscoelastic effects led
to a significant change in the flow rate predictions. In the present paper the affect
of viscoelastic properties on the flow rate as well as the meniscus position are
reported.

It is clear that the work of Carvalho and Scriven has contributed substantially
to our knowledge and understanding of deformable roll coating. This has been
achieved by employing a range of (i) elastomer deformation models – from simple
Hookean spring models to those incorporating plane-strain nonlinear viscoelastic
constitutive equations and (ii) fluid models and boundary conditions. Nevertheless
in the industrially relevant case of incompressible layers (Poisson’s ratio ν = 0.5) and
negative gaps certain key questions remain open. These are as follows:

1. How effective are Hookean spring models in modelling elastomer deformations
as ν → 0.5?

2. What are the effects of layer thickness L and elasticity E on the field variables?
Scaling arguments suggest that L and E−1 should cause similar effects – but is this
true?

3. What is the effect of varying capillary number on flow rate and meniscus location
in the negative gap regime?

4. What are the possible explanations for the difference between theory and
experiment?
The aim of this paper, therefore, is to address the above questions by employing a
finite-strip model (FSM) for the deformation of the compliant layer and a lubrication
model with suitable boundary conditions for the motion of the fluid. Answers to these
questions are essential to achieving a full understanding of the equilibrium deformable
roll coating problem. In turn this is a necessary prerequisite for gaining full insight
into the problem of instabilities.

2. Formulation of a mathematical model
2.1. Modes of operation and governing parameters

A deformable roll pair may be operated in one of two modes: fixed gap or fixed
load. In the former, roll separation, 2H0, is set by the adjustment of mechanical stops,
while in the latter it is achieved by varying an external force, W , applied across the
roll pair.

In fixed-gap operation W is the roll separating force, which is a dependent
variable, whereas for fixed-load operation H0 is a dependent variable. In addition,
roll separation may be set either at a positive gap where the centre to centre distance
is greater than the sum of the roll radii, or at a negative gap where the rolls would
be in interference if undeformed – as illustrated in figure 2.

Deformable roll coating devices are most commonly operated in a fixed-load,
negative-gap regime. However, following Coyle (1988), it is more convenient to



Deformable roll coating 159

Compliant layer

Compliant layer

Gap width

Deformation

Deformation

Gap width

(a)

(b)

Figure 2. Schematics of the contact region showing (a) the positive- and (b) negative-gap
regimes of operation. The undeformed roll profile is also shown (- -).
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Figure 3. The geometry and physical parameters of the coating device.

formulate the deformable roll coating model based on a fixed-gap regime, and to
calculate the equivalent roll separating force a posteriori. The roll pair geometry is
approximated by a rigid roll and a compliant strip as shown in figure 3, which
indicates the gap thickness H (X) and surface deformation D(X). The effective roll
radius, R̄, is set via 2/R̄ = 1/R1 + 1/R2, where R1 and R2 are the radii of the original
roll pair, thus preserving the gap width in the contact region at leading order.

Fluid–solid interaction is the key feature of a deformable roll pair, and the
competition between viscous force, elastic force, and external or roll separating force
may be represented by several dimensionless groups. For fixed-load operation, the
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coated film thickness, H ∞, is controlled by varying the load parameter

F =
W

ER̄
, (2.1)

equal to the ratio of external force to an elastic force. For fixed-gap operation, H ∞ is
controlled by varying the gap parameter

H0

R̄
. (2.2)

A non-dimensional elasticity number is defined by

ES =
µŪ

ER̄
, (2.3)

where µ is the fluid viscosity, and Ū is the roll speed. The ratio of viscous to surface
tension forces at the downstream meniscus is represented by the capillary number

Ca =
µŪ

T
, (2.4)

where T is the surface tension at the fluid/air interface.
The ratio of compliant layer thickness to average roll radius, L/R̄, is another

important parameter, especially if L is comparable with the width of the contact, A,
where typically A/L ∈ [0.1, 1] for coating applications. To aid classification of the
contact geometry, a dimensionless strip number can be identified as

α =
L

A∗ =
L

R̄

(
H0

R̄

)−1/2

, (2.5)

in which A∗ = (R̄H0)
1/2 is referred to as the nominal contact width. When α � 1

the compliant layer is well-represented by an infinite half-space, and the contact is
considered Hertzian. Under these conditions the contact width is less than A∗, since
the compliant layer recedes (as opposed to swells) at the contact edge, as shown in
figure 4(a). If α � 1, then thin-strip theory is applicable, enabling the deformation of
the layer to be described via a local deformation model for which the deformation at a
point X depends only on the local pressure, P (X). Under these conditions the contact
width exceeds A∗, since the compliant layer swells at the contact edge due to the incom-
pressibility, as shown in figure 4(b). Finally, for α =O(1) a finite-strip model (FSM)
is required, such as that formulated for elastic layers by Bentall & Johnson (1968).

Compressibility of the compliant layer is represented by Poission’s ratio, ν, and
in the industrially relevant case of incompressible layers ν = 0.5. The range of the
independent parameters considered is summarized in table 1.

2.2. Governing equations for thin-film fluid flow

When the effective roll radius, R̄, is large compared to the roll separation, H0,
(H0/R̄ � 1) lubrication theory can be used to model the fluid flow in the thin
separating film. This gives rise to Reynolds equation, relating hydrodynamic pressure,
P (X), to the inter-roll film thickness, H (X):

d

dX

[
H 3(X)

µŪ

dP

dX

]
= 12

dH

dX
, (2.6)
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Figure 4. (a) Thick-strip, A < A∗, and (b) thin-strip, A > A∗, regimes.

Parameter Range

H0/R̄ [−10−2, 10−2]
Ca [0.5, 2]
ES [10−7, 10−5]
L/R̄ [0.05, 0.2]

Table 1. The parameter range considered here. ES = 0 is treated as a special case.

or in integrated form for iso-viscous flows:

dP

dX
= 12µŪ

[
H (X) − 2H ∞

H 3(X)

]
. (2.7)

H (X) is expressed as the sum of the undeformed roll separation, S(X), and the
deformation of the layer, D(X):

H (X) = S(X) + D(X), (2.8a)

S(X) = 2H0 +
X2

R̄
, (2.8b)

where the parabolic approximation is used for the roll separation and H0 is less/greater
than zero for negative/positive gaps. Note that Z = −D(X) and Z = S(X) represent
the surfaces of the compliant layer and rigid roll respectively. This approximation is
valid to O(H0/R̄) where 2H0 is the roll separation for positive gaps, and interference
for negative gaps.
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In lubrication theory, the dimension of the fluid domain is reduced by one and
the position of the downstream meniscus is unknown a priori. Suitable boundary
conditions to locate the extrema of the fluid domain are described below.

Boundary conditions

At the meniscus, XM , the radius of curvature, R, is given by means of an arc-of-circle
approximation,

R ≈ 1
2
[H (XM ) − 2H ∞], (2.9)

and fluid pressure is taken to be capillary pressure such that

P (XM ) = − 2T

H (XM )(1 − 2β)
, (2.10)

where

β =
H ∞

H (XM )
. (2.11)

With a fully flooded inlet region, fluid pressure far upstream of the nip is assumed to
be ambient,

P (−∞) = 0. (2.12)

One additional boundary condition is then required to close the problem and its
form is dependent on the value of Ca . For small capillary numbers, Ca < 10−2, as
for example in meniscus coating (Gaskell et al. 1995), the Landau & Levich (1942)
expression relates H ∞ to R, the radius of curvature of the meniscus,

H ∞

R = 1.34Ca2/3, (2.13)

which, in turn, gives a condition on the pressure gradient. In deformable roll coating
however, capillary numbers are much larger and usually in excess of unity. In this
range of Ca there is only one stagnation point downstream of the nip which is
attached to the meniscus (Gaskell et al. 1998). For equal speeds it is located by the
Prandtl (1904)–Hopkins (1957) (PH) conditions:

U =
∂U

∂Z
= 0 at (X, Z) = (XM, −D(XM ) + H (XM )/2), (2.14)

which gives

β = 1
6
, (2.15)

and the following condition on pressure gradient:

dP

dX

∣∣∣∣
XM

=
8µŪ

H 2(XM )
. (2.16)

In the case of unequal roll speeds symmetry arguments no longer apply and a
two-dimensional flow analysis is needed to locate the stagnation point.

2.3. Governing equations for the compliant layer

The compliant layer is described by the Maxwell–Thomson model (Goryacheva 1998)
which allows the inclusion of linear viscoelastic effects. The constitutive equations
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linking the strain, ε0
ij , and the stress, σ 0

ij , take the form

ε0
X0X0 + Tε

∂ε0
X0X0

∂T
=

1 − ν2

E

(
σ 0

X0X0 + Tσ

∂σ 0
X0X0

∂T

)

− ν(1 + ν)

E

(
σ 0

Y 0Y 0 + Tσ

∂σ 0
Y 0Y 0

∂T

)
, (2.17)

ε0
Y 0Y 0 + Tε

∂ε0
Y 0Y 0

∂T
=

1 − ν2

E

(
σ 0

Y 0Y 0 + Tσ

∂σ 0
Y 0Y 0

∂T

)

− ν(1 + ν)

E

(
σ 0

X0X0 + Tσ

∂σ 0
X0X0

∂T

)
, (2.18)

ε0
X0Y 0 + Tε

∂ε0
X0Y 0

∂T
=

1 + ν

E

(
σ 0

X0Y 0 + Tσ

∂σ 0
X0Y 0

∂T

)
, (2.19)

where Tε is a retardation time and Tσ is a relaxation time. Two non-dimensional
quantities can be defined: the Deborah number

De =
TεŪ√
R̄H0

, (2.20)

which represents the ratio of the retardation time to a typical timescale of the flow;
and

Tε

Tσ

, (2.21)

the ratio of the two viscoelastic timescales. The inclusion of the strain rate and stress
rate terms allows the modelling of simple linear viscoelastic effects, whereas setting
these two timescales equal to zero recovers the plane-strain linear elasticity equations.
The coordinates (X0, Y 0) represent a material frame of reference that is related to
the laboratory frame, in which the axis of the roll is fixed and the deformation and
pressure profiles are steady, via

X = X0 + ŪT , Y = Y 0. (2.22)

Making the transformation

ε0
ij + Tε

∂ε0
ij

∂T
= ε0

ij + TεŪ
∂ε0

ij

∂X
= ε∗

ij , (2.23)

σ 0
ij + Tσ

∂σ 0
ij

∂T
= σ 0

ij + Tσ Ū
∂σ 0

ij

∂X
= σ ∗

ij , (2.24)

US + TεŪ
∂US

∂X
= U ∗

S , VS + TεŪ
∂VS

∂X
= V ∗

S , (2.25)

where US and VS are the displacements in the X- and Y -directions, produces the
variables ε∗

ij and σ ∗
ij that satisfy the equations of an isotropic linear elastic material.

These equations can be solved by the method of Fourier transforms (Bentall &
Johnson 1968) and in the general case, the deformation at any position on the surface
of the compliant layer is influenced by the entire normal surface stress distribution,
P (X), and this is expressed via an integral equation:

D∗(X) =
(1 − ν2)

πE
Re

∫ ∞

−∞
K̃(ω)(1 + iωTσ Ū )P̃ (ω)eiωX/L dω, (2.26)
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where P̃ is the Fourier transform of P ,

K̃(ω) =
(3 − 4ν) sinh 2ω − 2ω

2ω(ω2 + (1 − 2ν)2 + (3 − 4ν) cosh2 ω)
(2.27)

and the deformation, D(X), is given by

D(X) =
1

TεŪ

∫ X

−∞
D∗(S)exp((S − X)/TεŪ ) dS. (2.28)

The equivalent integral equation for purely elastic layers was given by Aleksandrov
(1962), and used by Meijers (1968) for the dry contact of a rigid cylinder on an elastic
strip bonded to a rigid undeformable backing. Contributions to the deformation
from the tangential traction forces have been discarded as they are O((H0/R̄)3/2)
and O((H0/R̄)−3/2E

3/2
S ) in comparison to the normal forces in positive and negative

gaps, respectively. This completes the description of the finite-strip deformation model
(FSM).

In previous research, much simpler deformation models have been used to describe
the behaviour of the compliant layer by relating the local deformation to the local
pressure. These are referred to as local deformation models. The constrained column
model (CCM) is derived from Hooke’s law, with D(X) given by

D(X) = P (X)/K, K =
(1 − ν)

(1 + ν)(1 − 2ν)

E

L
, (2.29)

where the constant of proportionality is often referred to as a spring stiffness , K .
Clearly, the CCM is restricted to compressible layers for which ν < 0.5. For

incompressible thin strips Meijers (1968), and Bentall & Johnson (1968) formulated
the incompressible strip model (ICM) which yields the relationship

D(X) = −L3

E

∂2P

∂X2
. (2.30)

These local deformation models (CCM and ICM) are assessed relative to the FSM
for both dry and lubricated contacts in § 3.

2.4. Numerical methods

A brief summary only of the solution method is given below while the reader is
referred to Young (1997) and Gostling (2002) for a more detailed account.

A finite element (FE) formulation is used to discretize and solve the EHL equations.
As with any FE analysis, the solution domain is divided into a number of elements
with the field variables, P (X) and D(X), represented in element e via a finite number
of nodal freedoms, Pei

and Dei
, defined at nodal locations, Xei

. The field variables are
approximated with second-order polynomial interpolation functions and hence each
element contains three nodes (interpolation points), typically located at each endpoint
and the midpoint of the element. For element e, the node locations are Xe1

, Xe2
and

Xe3
with related nodal unknowns Pe1

, Pe2
and Pe3

and De1
, De2

and De3
.

The aim is to substitute the approximations into the governing equations and
vary the nodal unknowns until some measure of the error is minimized. Substitution
into (2.6) is straightforward but (2.26) presents two problems. First, the integrand
contains the Fourier transform of the pressure and so the transform of the pressure



Deformable roll coating 165

approximation is required:

P̃ (ω) ≈ − L

iω
exp(−iωXM/L)P (XM ) +

L2

ω2

N∑
e=1

[
2ae2

[
xe2

exp
(
−iωXe2

/L
)

− xe1
exp

(
−iωXe1

/L
)

+
L

iω
exp

(
−iωXe2

/L
)

− L

iω
exp

(
−iωXe1

/L
)]

+ ae1

[
exp

(
−iωXe2

/L
)

− exp
(
−iωXe1

/L
)]]

, (2.31)

where ae1
and ae2

are defined as

ae1
=

−3λePe1
+ 4λePe2

− λePe3
− 4Pe1

Xe1
+ 8Pe2

Xe1
− 4Pe3

Xe1

λ2
e

, (2.32)

ae2
= 2

Pe1
− 2Pe2

+ Pe3

λ2
e

and λe = Xe3
− Xe1

. (2.33)

Secondly, (2.26) contains D∗, and so an intermediate set of nodal unkowns is
introduced, D∗

i , linked to the deformation nodal unknowns, Di , via (2.28). For each
nodal freedom there is a corresponding field equation, conditions (2.12) and (2.16) are
incorporated as natural boundary conditions and (2.10) completes the system. The
upstream boundary condition, (2.12), is applied at a sufficently large negative value
of X, chosen such that moving this point further upstream has a negligible effect on
the solution. The nodal locations, Xi , are parameterized by XM and this allows all the
unknown variables to be determined simultaneously in a single iterative loop, which
greatly improves the convergence characteristics of the solution method – referred to
as a total-Jacobian iterative method. Local mesh refinement is used to improve the
discrete representation of P (X) local to XM , whilst keeping the size of the numerical
problem manageable.

The resulting residual equations for this highly nonlinear problem, written as
R(X) = 0 with X = (P1, P2, . . . , D1, D2, . . . , XM ), were solved via Newton iteration,
for the range of parameters shown in table 1, using zeroth-order continuation to
move smoothly through parameter space.

Other important features of the method of solution are: (i) a fixed-gap problem
with H0 imposed rather than a fixed-load problem is solved; (ii) an analytic rigid
roll solution was used as an initial guess to obtain results in the positive-gap regime
followed by continuation through to negative gaps; (iii) the dimensional, rather than
dimensionless, form of the equations was solved as this enabled the solution to move
smoothly from the positive- to negative-gap regime.

3. Assessment of the local deformation models
The aim here is to assess the suitability of the local deformation models, CCM

and ICM, for representing the deformation of a thin and incompressible elastic layer.
The assessment is made by comparing predictions for contact-width, pressure and
deformation distributions to those predicted by the FSM for both dry and lubricated
conditions. The effect of incompressibility is investigated by considering the behaviour
of the elastomer as ν → 0.5.

3.1. Dry contacts: an equivalent contact

The dry contact problem of a rigid cylindrical indentor on a flat bonded strip is
solved using each of the three deformation models. The deformation, D(X), inside
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Figure 5. The variation of centreline pressure, P (0)/E, with A/L for the FSM (—), ICM
(– –), and CCM (- -). Results are shown for the CCM with both K ′ =E/L and K ′ = 4 × E/L.
L/R̄ = 0.1, ν = 0.5.

the contact is imposed using the parabolic approximation to a circle, and the normal
surface traction, P (X), outside the contact is set to zero, thus

D(X) = D0 − X2/R̄ for |X| < A,

P (X) = 0 for |X| � A.

In the classical contact problem, either the load or the centreline indentation, D0,
is imposed. This gives an inverse problem, as the contact width is not known a
priori. Since the purpose of this exercise is to compare the deformation models, a
simpler problem is therefore solved in which A/L is imposed and D0 is subsequently
calculated. For given values of ν and L/R̄, the three deformation models are used
to determine P (X) inside the contact. Inspection of (2.29) however reveals that
when ν = 0.5 no deformation of the layer is predicted, regardless of the pressure
distribution, and hence the CCM is invalid for incompressible materials. In fact work
by Meijers (1968) and Jin & Dowson (1989) has shown that the CCM gives accurate
results only for thin layers of compressible material with ν < 0.4 and A/L > 2. Coyle
(1988) and Carvalho & Scriven (1994) attempted to overcome this inherent limitation
of the CCM by replacing the definition of K found in (2.29) with an effective stiffness,
K ′ = E/L, which essentially corresponds to ν = 0. Numerical solutions of the FSM
were generated for P (0) in the range A/L ∈ [0.1, 10], with L/R̄ = 0.1 and ν = 0.5
and compared with results via the ICM and CCM as shown in figure 5. Whatever the
value of K the CCM fails to represent the lateral strain and under-predicts P (0) (see
figure 5). Carvalho & Scriven (1995b) made an attempt to improve the quantitative
agreement of their spring model at ν = 0.5 by introducing K ′ = 4 × E/L, which
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does give closer agreement with the FSM near α = 1, as seen in figure 5. More
recently, Carvalho & Scriven (1997b) have suggested a further modification to the
spring constant, K ′ = 2 × E/L; yet clearly no amount of ad hoc modification of
the stiffness can mask the fact that the CCM is strictly invalid for incompressible
materials which require the conservation of volume to be taken into account.

The ICM is a thin-strip model, derived for application to incompressible layers,
and as such one would expect it to be valid as α → 0. Unfortunately, figure 5 shows
that acceptable agreement is not achieved within the range of realistic operating
conditions. Hence, the ICM is deemed unsuitable for modelling the deformation of
compliant layers in deformable roll coating.

3.2. Lubricated contacts

Here the CCM and the FSM are assessed in the soft EHL regime, figures 6 and 8,
where the appropriate non-dimensional variables are

x =
X

L
, p(x) =

P (X)

E

(
L

H0

)
, d(x) =

D(X)

H0

, h(x) =
H (X)

L

A solution of the soft EHL equations for pressure, p(x), and gap thickness, h(x), for
both the CCM and FSM are compared in figure 6 for the parameter set: Ca = 1;
ES = 10−5; H0/R̄ = − 10−2; L/R̄ = 10−1 (α = 1); and ν = 0 (K ′ = E/L). As expected,
results for the two models are in close agreement. Nevertheless, there is one important
distinguishing feature, namely the presence of a nib (constriction of gap thickness)
or constriction of h(x) close to xm. This feature, well known in EHL studies (Hooke
1986), is not predicted by the CCM and therefore close to xm the corresponding
pressure curve is less steep and the ambient pressure loop is of smaller magnitude.

Differences in predictions between the FSM and various Hookean models (CCM)
become more apparent as ν → 0.5. These are seen by using non-dimensional variables

λ̂, x̂, x̂m and f̂ that are applicable in both the positive and negative gap regimes and
defined by

λ̂ =
H ∞

R̄
, x̂ =

X

R̄
, x̂m =

XM

R̄
, f̂ =

W

µŪ
. (3.1)

Figure 7 shows predictions for their variation with H0/R̄ when ν = 0.5 for the various
models. A large disparity is observed for negative gaps between results of the FSM and
the CCM with K ′ = E/L. The modified spring constant K ′ = 4×E/L, introduced by
Carvalho & Scriven (1995b), has the effect of making the results for λ̂ and f̂ in close
agreement with the FSM over the whole range of H0/R̄. This approach fails, however,
to accurately predict x̂m; the position of the meniscus is greatly underpredicted by
the modified CCM, which represents a serious shortcoming of this model since an
accurate prediction of x̂m is essential for the purposes of developing a stability analysis.

Further evidence of the inability of Hookean models to effectively model an
incompressible compliant layer can be obtained by considering the behaviour of
a deformable roll pair as ν → 0.5. All the field variables undergo rapid change: the
flow rate rapidly decreases and the meniscus location moves further downstream, see
Young (1997). Thus, since 0.45 � ν � 0.5 for elastomers, a spring model that is
calibrated for a given value of ν cannot give satisfactory results at a different value
and therefore such a model could not cover the full range of elastomeric materials.
Figure 8 shows that as ν increases the pressure increases throughout the contact
region and there is increased swelling of the compliant layer on either side of the
contact region – thus increasing the contact width (note that deformation profiles
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Figure 6. Profiles of p(x) and h(x) for the FSM (—) and CCM (– –) at ν = 0; note the close
agreement. H0/R̄ = −10−2, ES = 10−5, Ca = 1, L/R̄ = 0.1, K ′ = E/L.

have been terminated at xm). Since Hookean ‘spring’ models assume that deformation
D(X) is proportional to local pressure P (X) then it is clear from figure 8 that they
are quite incapable of predicting layer swelling.

Hence we are left to conclude that for realistic operating conditions, the deformation
of compliant layers (ν ≈ 1/2) cannot be modelled effectively by either Hookean models
or the incompressible column model (ICM). In what follows the compliant layers are
assumed to be incompressible, ν = 0.5.
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Figure 8. Profiles of p(x) and d(x) for the FSM for a range of ν; note the increase in
maximum pressure, contact width, and layer swelling as ν → 0.5. H0/R̄ = −10−2, ES = 10−5,
Ca = 1, L/R̄ = 0.1.

4. Equilibrium flow: lubricated contacts with an incompressible compliant layer
An equilibrium flow analysis is presented based on a soft EHL model which

incorporates (i) the lubrication approximation for a thin film, (ii) film-splitting
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boundary conditions, (iii) the FSM for the deformation of an incompressible layer
(ν = 0.5), and (iv) no viscoelastic effects, i.e. Tσ = Tε = 0.

Although results can be presented from the two different perspectives of fixed-gap
operation and fixed-load operation, which are favoured by academic researchers and
industrial operators respectively, here attention is restricted to fixed-gap operation.
The distinction is made between positive- and negative-gap regimes, which essentially
correspond to lightly loaded and heavily loaded regimes of EHL, and in each case
the aim is to explore the effects due to layer thickness and elasticity.

It is possible to gain insight into the expected behaviour of the roll pair through a
simple dimensional analysis. In the positive-gap/lightly loaded regime the pressure is
assumed to be dominated by viscous forces:

P ∼ µŪ

H0

(
R̄

H0

)1/2

, (4.1)

whereas in the negative-gap/highly loaded regime the deformation scales with the
extent of the interference:

D ∼ H0, (4.2)
and in both the positive- and negative-gap regimes the strain in the compliant layer
is balanced with the stress:

D

L
∼ P

E
. (4.3)

Thus in each regime either the scale for D or P is given and the stress–strain balance
provides the remaining scale. This last balance suggests that L and E−1 may have the
same effect. A scale for the dimensional flux, Q, in the negative-gap/highly loaded
regime can be obtained by assuming that through the contact region the film thickness,
H , is almost constant, and therefore balancing the pressure gradient (∼ H0E/L

√
H0R)

and the viscous stress (∼ µŪ/H 2) gives

Q ∼ UH ∼ UR

(
µŪ

ER̄

)1/2 (
L

R̄

)1/2 (
R̄

H0

)1/4

. (4.4)

Thus it appears that L and E−1 may have similar effects on the flux in this regime.
The physical basis for the apparent similarity between ES (or equivalently E−1) and
L via (4.3) is straightforward; it is simply that to make a given indentation requires
a higher load if the compliant layer is made harder (increasing E) or shallower
(decreasing L). One aim of the investigation is to determine the effect of L and ES

on the physical variables P , D, Q and XM .

4.1. Fixed-gap operation

Solutions are generated for the parameter range

µŪ

ER̄
∈ [10−5, 10−7],

H0

R̄
∈ [−10−2, 10−2],

with Ca = 1, PH boundary conditions and ν = 0.5. Results are expressed in terms of

the modified non-dimensional variables λ̂, x̂, x̂m and f̂ , defined by (3.1). Typical
solution curves of pressure and gap thickness for both positive- and negative-
gap regimes are displayed in figures 9 and 10. These are well-known results in
elastohydrodynamic lubrication (Dowson & Higginson 1966); they illustrate that the
effect of the compliant layer is to change the gap width near X = 0 from parabolic to
locally linear with the slope tending to zero as the gap becomes increasingly negative
(or the load increases). The variation of flow rate λ̂ and meniscus location x̂m with
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Figure 9. Profiles of pressure and gap width for a positive gap, using the FSM. Rigid roll
asymptotes are also shown (- -). ν = 0.5, H0/R̄ = 10−3, ES = 10−5, Ca = 1, L/R̄ = 0.1.

H0/R̄ is shown in figures 12 and 13 (for fixed L/R̄ and ES respectively) which also
include the rigid roll and dry contact asymptotes for comparison.

4.1.1. The positive-gap regime

The effect of layer deformation for a positive gap, figure 9, is to modify H (X) close
to X = 0 so that the gap assumes a characteristic, almost linear, convergent film
profile (see also Hooke 1986). The main effect on the pressure curve is observed to be
a reduction in the magnitude of gradients and the maximum/minimum pressures.
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Figure 10. Profiles of pressure and gap width for a negative gap, using the FSM. Dry contact
asymptotes are also shown (- -). ν = 0.5, H0/R̄ = −5 × 10−3, ES = 10−6, Ca = 1, L/R̄ = 0.1.

Varying the layer properties (layer thickness and elasticity) affects deformations to
the compliant layer and consequently λ̂ and x̂m. Intuitively we would expect elastic
deformations to increase by using either a softer layer of material or a thicker one.
It can be shown that, for positive gaps, deformations do increase with increasing L,
see figure 11, and with increasing ES (decreasing E). Figures 12 and 13 show that the

behaviour of λ̂ and x̂m at large H0/R̄ is similar to that for fixed-gap rigid roll coating,
with both decreasing as H0/R̄ is reduced. Furthermore, for a constant gap H0/R̄,
both λ̂ and x̂m are seen to increase with ES and with L. Hence one may conclude
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Figure 11. Deformation profiles. H0/R̄ = 4 × 10−3, Ca = 1, ES = 10−5, 0.05 � L/R̄ � 0.2,
PH boundary conditions.

that, throughout the positive-gap regime, ES and L have the same effect on layer

deformation and on the system parameters λ̂ and x̂m.
As a means of achieving very small flow rates the positive-gap rigid roll regime

ceases to be practical due to the dual requirements of stiff rolls and a very small roll
clearance. If ε is the total radial runout of the roll pair, then roll clash is avoided if

ε

R̄
� H0

R̄
.

Typically ε/R̄ ∈ [10−4, 10−5], and so rigid rolls are restricted to H0/R̄ > 10−4. This
defines a minimum film thickness for fixed-gap rigid roll coating, below which
deformable rolls come into their own.

4.1.2. The negative-gap regime

For negative gaps, figure 10, the gap thickness is small, convergent and yet almost
constant throughout the contact region. Hence the pressure in this region has a similar
profile to the dry-contact Hertzian asymptote together with an inlet pressure sweep
and a sub-ambient loop just upstream of x̂m – arising respectively due to the presence
of a flooded inlet and film-splitting boundary conditions.

In the contact region, the rigid roll acts as an indentor, the degree of indentation is of
O(H0) and both layer thickness, L, and ES have little effect on the elastic deformations
within the contact region. They do, however, significantly affect the pressure where the
profile remains similar and close to the dry contact case. Numerical results confirm
that the maximum pressure decreases with L and also ES (figure 14) as suggested via
relation (4.3).

At X = 0, figures 10 and 14 show that dP/dX ≈ 0 and the fluid velocity has, there-
fore, only a Couette component. Hence flow rate is given by λ̂ = H ∞/R̄ � H (0)/2R̄,
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Figure 12. The variation of λ̂ and x̂m with H0/R̄, with L/R̄ = 0.1 fixed. The rigid roll (ES = 0)
(- -) and a highly loaded (ES = 10−7) asymptote are also shown. ES = 0, 10−7, 10−6 and 10−5;
Ca = 1, PH boundary conditions.

which will diminish as gap thickness is reduced when the magnitude of H0/R̄ (load)
is increased, see (4.4). This is confirmed in figure 12 which shows that thinner
films can be generated than is practically feasible with a positive gap. Figure 12

also shows that as λ̂ decreases the sensitivity of λ̂ to H0/R̄ also decreases, thus giving
a more robust production process than fixed-gap rigid roll coating in the sense that
any deviation from the desired value of H0/R̄ has a small effect on λ̂. In addition
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figures 12 and 13 show that ES and L have the same effect on flow rate as for positive
gaps.

As the coating regime changes from postive to negative gap, the location of
the meniscus begins to move away from the nip, as shown in figures 12 and 13.
This increase in x̂m corresponds to an increase in nominal dry-contact width, A∗ =
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(2H0R̄)1/2. The equivalent dry-contact width, A/R̄, is also included and is approached
as H0/R̄ is increased in magnitude.

The overall effects of ES and L/R̄ on x̂m are clearly different. Figure 12 shows
that, for a given L/R̄, x̂m increases with ES whereas figure 13 indicates that, for a
given ES , x̂m increases with L/R̄ for ‘small negative gaps’ and decreases with L/R̄ for
‘large negative gaps’. These effects cannot be explained on the basis of earlier scaling
arguments; rather it is necessary to examine ‘layer swelling’ at the edge of the contact
region as shown in figure 8. The reader will note that it is essential to predict x̂m

accurately in order to subsequently analyse the stability of the liquid film/meniscus.

4.1.3. Layer swelling at the edge of the contact region

For negative gaps figures 12 and 13 reveal the different effects of elasticity ES and
layer thickness L/R̄ on x̂m. In the former case x̂m increases with ES whereas in the
latter x̂m may move either towards or away from the nip as L/R̄ increases, depending
on the magnitude of H0/R̄. This behaviour is more clearly illustrated by selecting
particular values of H0/R̄ (H0/R̄ = −2.0 × 10−3, −5 × 10−3 and 7.5 × 10−3) and
plotting the variation of x̂m with ES (L/R̄ fixed) and with L/R̄ (ES fixed). Figure 15
shows x̂m increasing with ES in each case whereas it shows x̂m increasing with L/R̄,
for H0/R̄ = −2.0×10−3, decreasing with L/R̄, for H0/R̄ = −7.5×10−3, and remaining
almost constant for H0/R̄ = −5.0 × 10−3.

The key to explaining the different effects of ES and L/R̄ on x̂m is to first consider
their effect on D(XM )/R̄, that is on layer swelling at the edge of the contact region.
Figure 16 reveals that, for each of the three values of H0/R̄, D(XM )/R̄ shows little
variation with ES . However, for the same three values of H0/R̄, D(XM )/R̄ increases
with L/R̄. Hence L/R̄ has significantly more effect on layer swelling than does ES .
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The behaviour of x̂m in figure 15 can now be explained by referring to two
expressions for the gap thickness at x̂m,

H (XM ) = 2H0 + D(XM ) +
X2

M

R̄
, (4.5)

and

H (XM ) =
H ∞

β
. (4.6)

For negative gaps with β =constant and H0 = constant, if ES or L/R̄ are increased
then flow rate, H ∞, increases (figures 12 and 13) as does H (XM ) via (4.6). In particular:

(i) If ES increases, D(XM ) remains effectively constant – see figure 16 – and so via
(4.5) it follows that x̂m must increase – see figure 15.

(ii) If L/R̄ increases, D(XM )/R̄ increases (becomes less negative) and it is precisely
this behaviour of D(XM )/R̄ that determines the behaviour of x̂m:

(a) when H0/R̄ = −2 × 10−3 the increase in D(XM )/R̄ is relatively small and so
XM must increase to ensure that H (XM ) increases in accordance with (4.6);
(b) when H0/R̄ = −7.5 × 10−3 the increase in D(XM )/R̄ is relatively large; in
fact ‘too large’ so that xm must decrease for H (XM ) to increase in accordance
with (4.6);
(c) when H0/R̄ = −5×10−3 the increase in D(XM )/R̄ appears to be just sufficient
for H (XM ) to increase in accordance with (4.6) and as a consequence x̂m remains
almost constant.

4.1.4. The sub-ambient pressure loop and the effect of the compliant layer on stability;
the effect of Ca

The sub-ambient pressure loop is re-displayed in figure 17, where the variation of
x̂m, p̂(x̂m), and dp̂(x̂m)/dx̂ with H0/R̄ is more clear, with p̂ = PL/ER̄. An important
feature is the locus of the meniscus as H0/R̄ is decreased (increasing f̂ ). The meniscus
first moves in towards the nip, reaching its minimum position around the transition
between positive- and negative-gap regimes, thereafter moving out as the effective

Hertzian half-contact width increases. As H0/R̄ is decreased, λ̂ reduces (see figures 12
and 13) and p̂(x̂m) and dp(x̂m)/dx̂ vary according to the relationships

p̂(x̂m) ∼ −1

λ̂
,

dp̂

dx̂

∣∣∣∣
x̂m

∼ 1

λ̂2
, (4.7)

which follow from (2.10) and (2.16) respectively. Therefore, p̂(x̂m) becomes more
negative with decreasing (more negative) H0/R̄, whilst dp̂(x̂m)/dx̂ increases. The
pressure gradient remains positive for both positive and negative gaps and therefore
has a destabilizing effect on the meniscus that gives rise to the three-dimensional
ribbing instability.

To understand the influence that layer deformation has on stability one must
examine the consequences of the change in geometry (inter-roll film thickness) close
to XM where

dH

dX

∣∣∣∣
XM

= 2XM +
dD

dX

∣∣∣∣
XM

. (4.8)

Since an increase in dH/dX|XM
stabilizes the film-splitting process (Pitts & Greiller

1961 and Savage 1977), it follows that both XM and dD/dX|XM
will contribute

to stability. In the vicinity of the meniscus there is layer swelling due to the
incompressiblity of the compliant layer and for light to moderate loads (positive
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Figure 17. The variation of p̂(x̂) local to xm as f̂ is increased. L/R̄ = 0.1, ES = 10−5,
ν = 0.5, Ca = 1.

gaps), dD/dX|XM
> 0 as illustrated in figure 11. This is the reason why compliant

layers have a stabilizing effect in deformable roll coating with positive gaps.
For high loads (negative gaps) the situation is less clear since it can be shown that

dD/dX|XM
is now negative thus providing a destabilizing influence. Nevertheless, as

H0/R̄ becomes more negative, there is the possibility for an unstable film-splitting
process to restabilize itself, depending on the competition between opposing effects
due to pressure gradient and T dH/dX|XM

. Clearly, only a full stability analysis will
reveal the particular effects due to L/R̄ and ES on the stability of deformable roll
coating with negative gaps.

When the PH conditions are applied in fixed-gap rigid roll coating, usually for
flooded inlets and in the range Ca > 1, x̂m and λ̂ are virtually independent of Ca .
The same is true for deformable roll coating with large positive gaps yet as H0/R̄ is
decreased and eventually becomes negative the behaviour depends upon the manner
in which Ca is varied, that is whether the viscosity, speed or surface tension is varied.
If Ca is varied with ES held constant (i.e. variable surface tension) then the fixed-
gap rigid roll result still stands. However, if Ca is varied with Ca/ES held constant
(i.e. variable viscosity or roll speed) then λ̂ and x̂m alter significantly. Therefore, the
interaction of viscous and elastic forces enables the viscosity and roll speed to play
an important role in determining both the film thickness and meniscus location.

4.2. Experimental validation

Unfortunately, insufficient information concerning the thickness and compressibility
of the deformable layer generally precludes any comprehensive comparison between
theoretical predictions and available experimental data. An exception is the work of
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Figure 18. A comparison of mathematically predicted (—) and experimentally measured (�)
H ∞ and L/XM for a range of loads with H0/R̄ ∈ [−10−3, −10−2], ES = 0.576×10−6, Ca = 0.1,

ν = 0.5, and L/R̄ = 0.102, for which α ∈ [
√

2, 1]. Predictions due to Jaffar (1990) are also
shown (- -).

Cohu & Magnin (1995), in which coated film thickness was measured for a range
of applied loads with all relevant information recorded to enable a comparison with
predictions from the purely elastic FSM. As applied load is varied both the predicted
and measured values of coated film thickness, H ∞, are compared in figure 18, along
with values for L/XM , which is proportional to the strip number, α = L/R̄×(H0/R̄)−1/2.
Cohu & Magnin’s data are for L/XM < 1, i.e. when the compliant layer deforms as a
thin strip and the sensitivity of H ∞ was observed to increase. Predicted and measured
values of L/XM are seen to be in good agreement, especially for high loads, whereas
predictions for H ∞ exceed the experimental results by a factor of two. Possible
reasons for this discrepancy are experimental error due to the accuracy of scraping
when measuring a coated film thickness of approximately 10 µm or viscoelastic effects
in the deformable layer.

Cohu & Magnin state that experimental error could be as much as 30% for thin
films but this alone cannot explain the difference between theory and experiment.
Here, viscoelastic effects are examined by setting Tσ and Tε in (2.17)–(2.19) to non-zero
values. To accurately model an elastomer a spectrum of retardation and relaxation
times should be used but as no data exist for the viscoelastic properties (i.e. shear
modulus G′ and loss modulus G′′) of the elastomers used in the experiments, single
values of Tσ and Tε were selected (giving a modified Deborah number De(H0/R̄)1/2 =
3 × 10−2 and Tε/Tσ = 102) with the aim of investigating what effect the inclusion of
the viscoelastic terms has on the predictions of the FSM. Figure 19 shows, for typical
operating conditions, the variation of the flux and meniscus position with load as
predicted by the FSM, both with and without the viscoelastic terms included. It is
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Figure 19. Variation of flux and flow rate against load with (- -) and without (—)
viscoelastic terms. L/R̄ = 0.2, ES = 10−6 and Ca = 1.

clear that the introduction of these terms has a dramatic effect on the magnitude of
the flux, with the reduction being of the order of 60% for high loads, yet the effect
on XM is much less pronounced, the maximum difference being 6%. It is therefore
apparent that viscoelastic effects could be responsible for the discrepancy between
theoretical predictions and experimental measurements of the flux and this is an area
which merits further investigation.
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